

SELECTION GUIDE¹

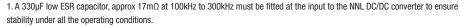
NNL10 Series

Non-Isolated DC/DC Converters

|--|

FEATURES

- RoHS compliant
- Industry standard footprint
- Short circuit protection
- High efficiency
- Under voltage lock out
- Output voltage trimming
- Operating temperature range -40°C to 85°C
- SMD Construction
- Optional DC OK signal
- Options available without Trim and Remote Sense Functionality


DESCRIPTION

The NNL10 series is part of a range of non-isolated, cost effective DC/DC converters offering high precision output voltages from a nominal 3.0-5.5V or 10.0-14.0V intermediate bus where isolation is not required. The series has been recognized by Underwriters Laboratory (UL) to UL 60950, file number E179522 applies.

Recommended			Nominal	Output		Current	Max. Output	Nominal
Alternative	Orc	ler Code ²	Input Voltage	Voltage	Min.Load	Full Load	Power	Efficiency
			V	V	Α	Α	W	% (Min.)
	NNI	_10-1C	4.0	0.9	0	10	9	79.7
Recommended	NNI	_10-2C	4.0	1.0	0	10	10	81.8
alternative:	NNI	_10-3C	4.0	1.2	0	10	12	84.3
0KY-T/10-W5P-C >>	NNI	_10-4C	4.0	1.5	0	10	15	86.5
click here to	NNI	_10-5C	4.0	1.8	0	10	18	88.2
download the data	NNL10-6C		4.0	2.0	0	10	20	89.2
sheet	NNL10-7C		4.0	2.5	0	10	25	91.2
	NNI	_10-8C	4.0	3.3	0	10	33	92.1
		NNL10-9C	4.0	0.9	0	10	9	79.7
Recommended		NNL10-10C	4.0	1.0	0	10	10	81.8
alternative:	¥	NNL10-11C	4.0	1.2	0	10	12	84.3
0KY2-T/10-W5P-C >>	DCOK	NNL10-12C	4.0	1.5	0	10	15	86.5
click here to download the data sheet	With I	NNL10-13C	4.0	1.8	0	10	18	88.2
	3	NNL10-14C	4.0	2.0	0	10	20	89.2
		NNL10-15C	4.0	2.5	0	10	25	91.2
		NNL10-16C	4.0	3.3	0	10	33	92.1

INPUT CHARACTERIST	ICS				
Parameter	Conditions	Min.	Тур.	Max.	Units
Voltage range	$V_{NOM} = 4.0 V_{DC} V_{OUT} < 2.75 V$	3.0		5.5	V
	$V_{NOM} = 4.0 V_{DC} V_{OUT} > 3.0 V$	4.0		5.5	V
Under veltage leek out	Turn on threshold $V_{NOM} = 4.0 V_{DC}$		2.8		V
Under voltage lock out	Turn off threshold V _{NOM} = 4.0V _{DC}		2.7		V
Reflected ripple current			30		mA p-p
Input no load ourrent	$V_{IN} = 5.5V V_{OUT} = 0.9V$		100		
Input no load current	$V_{IN} = 5.5V V_{OUT} = 3.3V$		140		mA
Input standby current	V _{IN} = 5.5V Module disabled		1.5		mA

Parameter	Conditions		Min.	Тур.	Max.	Units
Rated current	$T_A = -40$ °C to 85°C (see thermal performance	e characteristics)			10.0	Α
Voltage set point accuracy				1.0	2.0	%
Line regulation	Low line to high line			0.5	1.0	%
Load regulation	0% load to 100% load				0.55	%
Ripple & noise	BW = DC to 20MHz			25	50	mVp-p
Voltage trim			-10		+10	%V оит
Remote sense					0.5	V
Transiant reanance	IOUT = 5.0A-10.0A-5.0A	Peak deviation		100		mV
Transient response	$C_{OUT} = 1 \mu F / / 10 \mu F$	Settling time		70		μs
External load capacitance				10,000		μF

2. If components are required in tape and reel format suffix order code with -R, e.g. NNL10-10C-R.

All specifications typical at Ta =25°C, nominal input voltage and rated output current unless otherwise specified.

ABSOLUTE MAXIMUM RATINGS		
Short circuit protection		Continuous
Remote sense		Vout ±0.5Vpc
DC OK		-0.2Vpc to +17Vpc 20mA
Input voltage V _{IN}	ancol ElE	6.5Vpc
Trim	(IR20FF)	-0.3V to Vouт
Remote ON/OFF		-0.2Vpc to +17Vpc
Minimum load		0%

GENERAL CHARACTERISTIC	S ¹				
Parameter		Min.	Тур.	Max.	Units
Switching frequency			300		kHz
Start delay	From power on/remote off		4.0		ms
	Module on (or pin unconnected)	2.6			V
Remote on/off	Module off (of pill unconnected)			100	μA
hemote on/on	Module off			0.3	V
	Would on			-500	μA
MTTF		TBA			kHrs

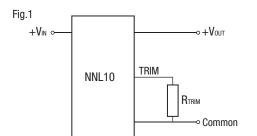
TEMPERATURE CHARACTERISTICS	1				
Parameter	Conditions	Min.	Тур.	Max.	Units
Operation	See thermal performance characteristics	-40		85	°C
Storage		-55		125	°C
Over temperature protection	Substrate temperature		115		°C

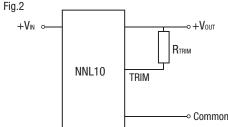
APPLICATION NOTES

Output Voltage Trimming

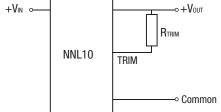
The trimming input on the NNL10 allows output voltage adjustment by ±10% of nominal output voltage by connection of a resistor or by application of a voltage to the Trim pin.

To increase the output voltage, an external resistor (Fig.1) or voltage source should be connected between the Trim and the common pin.


Rtrim-up =
$$\frac{24.080}{|\Delta V_{OUT}|}$$
 - Rinternal K Ω

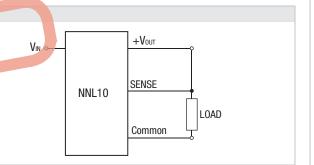

$$V_{\text{TRIM-UP}} = 0.8 \text{-} \left[\frac{\Delta V_{\text{OUT} \, x} \, R_{\text{INTERNAL}}}{30.100} \right]$$

 ΔV_{OUT} is the required change in output voltage in V. To decrease the output voltage, an external resistor (Fig. 2) or voltage source should be connected between the Trim pin and the +Vout pin.


$$\begin{split} & \text{Rtrim-down} = & \left[\left(\frac{\Delta V_{\text{OUT}} - 0.8}{|\Delta V_{\text{OUT}}|} - 1 \right) x \ 30.100 \right] - \\ & \text{Rinternal K} \Omega \\ & \text{Vtrim-down} = 0.8 + \left[\frac{|\Delta V_{\text{OUT}}| \ x \ \text{Rinternal}}{30.100} \right] \end{split}$$

The trim pin should be left disconnected if not used.

RINTERNAL VALUES			
VOUT SET (V)	RINTERNAL (k0hm)		
0.9	5.1		
1.0	30.1		
1.2	59		
1.5	100		
1.8	100		
2.0	100		
2.5	78.7		
3.3	59		

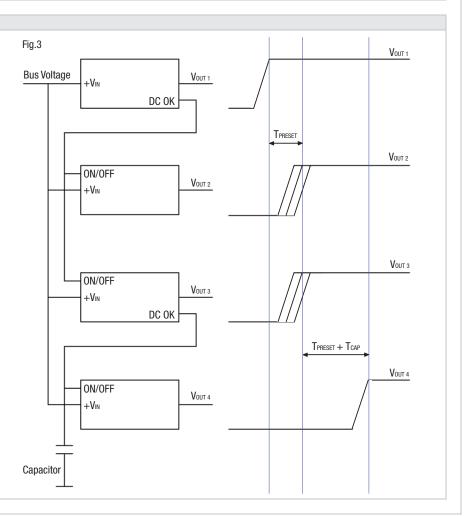

^{1.} Specifications typical at $T_A = 25$ °C, nominal input voltage and rated output current unless otherwise specified.

APPLICATION NOTES (continued)

Remote Sense

The remote sense function compensates for voltage drops from the output of the NN'_-10 to the load point by regulating the output voltage at the load point. The voltage of the load point by regulating the output voltage at the load point. The voltage in the load point of the NN'_-10 to the load point. The voltage in the load point is can be used in combination with each other the maximum voltage increase is 0.5V.

When increasing the output voltage the maximum output power of the NNL10 must not exceed the maximum output figures stated in the selection guide.


Output Sequencing

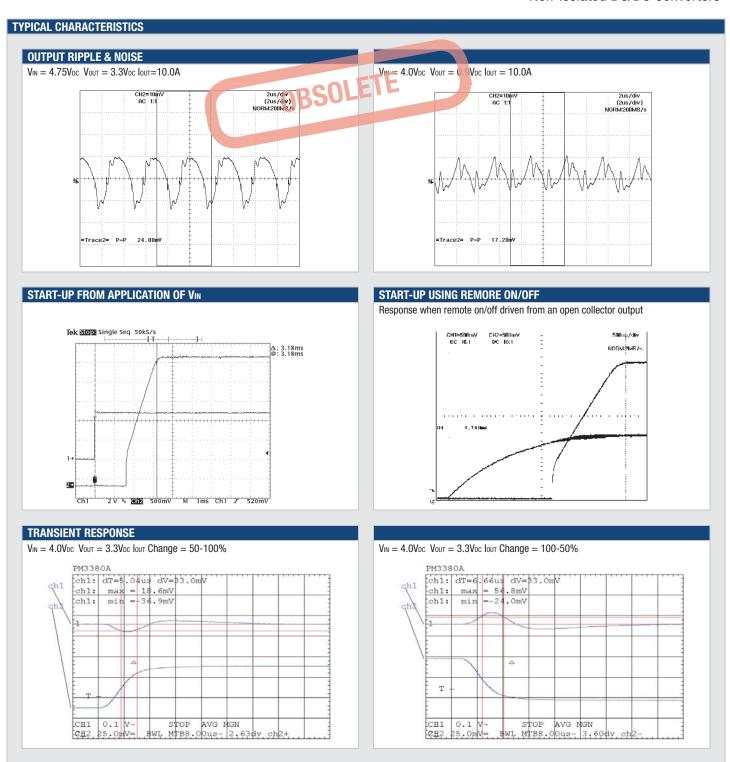
To simplify output sequencing, the NNL10 series offers an optional single wire interconnection that performs this function. Using this connection, up to four devices can be 'daisy chained' together, with the 'DC OK' signal from one converter signifying that the next converter can be enabled. A capacitor, simply connected to the daisy chain link, provides a settable delay in the sequence of the converters starting.

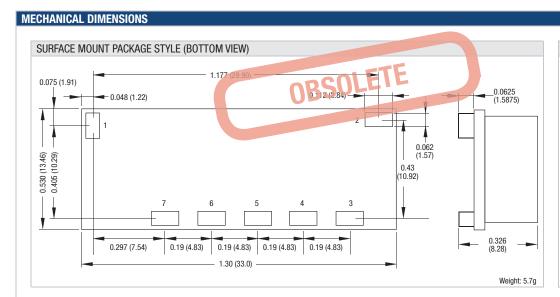
Typical capacitor values and corresponding delays are shown in the table below.

Figure 3 shows a typical sequencing configuration, along with the voltage outputs that it produces. As well as reducing component count, making use of the 'built-in' sequencing capability means that only a single PCB track is required for a full sequencing solution.

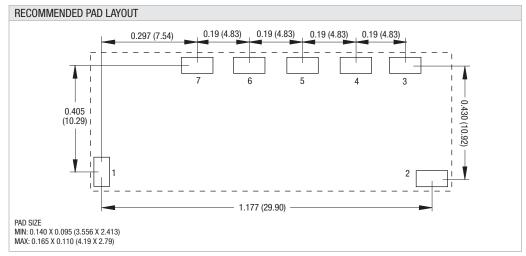
VIN	Capacitor	Delay
3.0V _{DC}	0.22μF	1.8ms
5.5 V DC	0.22μF	0.6ms

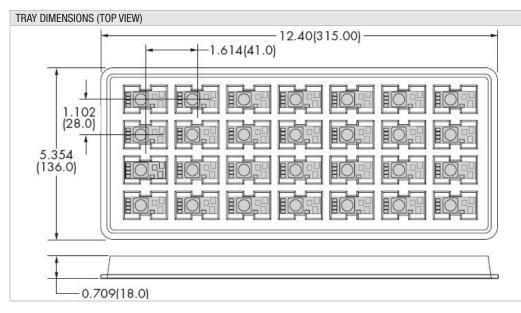
Rohs Compliance Information

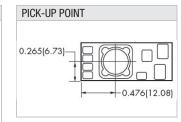



This series is compatible with RoHS soldering systems with a peak reflow solder temperature of 245°C. The pin termination finish on this product series is Matte Tin over Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems. This series has a Moisture Sensitivity Level (MSL) 2.

For further information, please visit www.murata-ps.com/rohs

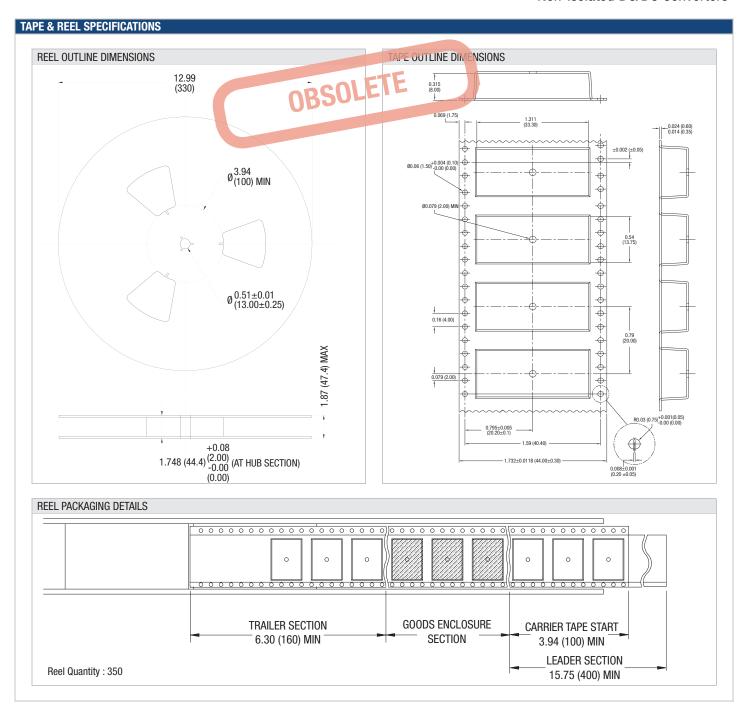





PIN CONNECTIONS

Pin	Function
1	On/Off
2	+Vin
3	DC OK*
4	Common
5	+V out
6	TRIM
7	SENSE

* Pin 3 (DC OK) is an optional pin feature which allows multiple NNL10 DC/DC converters to have sequenced outputs when used in conjunction with Remote ON/OFF pin (see application note for futher information).



Tray quantity: 28 All dimensions ±0.0138 (0.35)

Unless otherwise stated all dimensions in inches (mm) ± 0.01 (0.25).

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.